

DPP - 3 (Electrostatics)

Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/51		
Video Solution on YouTube:-		https://youtu.be/avecp_ICRGo		
Written Solution on Website:-		https://physicsaholics.com/note/notesDetalis/40		
Q 1.	Determine the electron $7\mu C$ and $-2\mu C$ (and (9 cm,0,0) respective (a) $-0.7 J$ (c) 0.7 J	ostatic potential energy of a system consisting of two charges with no external field) placed at $(-9 \text{ cm}, 0, 0)$ and ely. (b) $-1.4 J$ (d) $1.4 J$		
Q 2.	Two points charges a air. calculate the wor (a) $4.5 \times 10^{-7} J$ (c) $4.5 \times 10^{-9} J$	and b of values $5 \times 10^{-9}C$ and $3 \times 10^{-9}C$ are kept 6 cm apart in k done when charge B is moved 1 cm towards charge A: (b) $5.4 \times 10^{-7}J$ (d) $5.4 \times 10^{-9}J$		
Q 3.	Three chargers q_1 = equilateral triangle of (a) $4 \times 10^{11} J$ (c) $4 \times 10^9 J$	$q_2 = 4C$ and $q_3 = 2C$ are at the three corners of an f side 9cm. Then the electric potential energy of the system is: (b) $-4 \times 10^{11}J$ (d) -4×10^9J		
Q 4.	Two identical charge from where they are infinitely away from (a) $\frac{kQ^2}{d}$ (c) $\frac{3kQ^2}{2d}$	d particles having equal charge Q, are placed at a distance d apart, released. Find out kinetic energy of each particle when they are each other: $\left(k = \frac{1}{4\pi\varepsilon_0}\right)$ (b) $\frac{2kQ^2}{d}$ (c) $\frac{kQ^2}{2d}$		
Q 5.	Two equal charges q midpoint. The potent (a) $\frac{9q^2}{8\pi\varepsilon_0 a}$ (c) $\frac{-7q^2}{8\pi\varepsilon_0 a}$	are placed at a distance 2a and a third charge -2q is placed at the ial energy of the system is (b) $\frac{q^2}{8\pi\epsilon_0 a}$ (d) $\frac{6q^2}{8\pi\epsilon_0 a}$		
Q 6.	Identical charges -q electrostatic potential (a) $\frac{-\sqrt{2}q^2}{4\pi\varepsilon_0 a}$ (c) $\frac{-\sqrt{3}q^2}{8\pi\varepsilon_0 a}$	each are placed at the eight corners of a cube of side a. Find the l energy of a charge +q placed at the center of the cube: (b) $\frac{-8\sqrt{2}q^2}{\pi\varepsilon_0 a}$ (d) $\frac{-4q^2}{\pi\varepsilon_0\sqrt{3}a}$		

Q 7. Two charges q_1 and q_2 are placed 30cm apart as shown. A third charge q_3 is moved along the circle of radius 40cm from C to D. The change in the potential energy of the system is $\frac{q_3K}{4\pi\varepsilon_0}$. Find K

- Q 8. A system consists of two charges $4\mu C$ and $-3\mu C$ with no external field placed at (-5 cm, 0, 0) and (5 cm, 0, 0) respectively. The amount of work required to separate the two charges (slowly) infinitely away from each other is (a) 1.1 *J* (b) 2 *J* (c) 2.5 *J* (d) 3 *J*
- Q 9. Calculate the electrostatic potential energy of an electron-proton system of hydrogen atom. In the first Bohr orbit of hydrogen atom, the radius of the orbit is $5.3 \times 10^{-11}m$: (a) $-4.35 \times 10^{-18}J$ (b) $-2.175 \times 10^{-18}J$ (c) $-4.35 \times 10^{-19}J$ (d) $-2.175 \times 10^{-19}J$
- Q 10. point charge $q_1 = +2.4 \,\mu C$ is held stationary at the origin. A second point charge $q_2 = -4.3 \,\mu C$ moves from the point x = 0.15m, y = 0 to the point x = 0.250m, y = 0.250m. The amount of work is done by the electric force on q_2 is nearly $-356 \times 10^{-x} J$. Find

Q.1	a	Q.2 a	Q.3 b	Q.4 d	Q.5 c
Q.6	d	Q.7 a	Q.8 a	Q.9 a	Q.10 b

× × ×	PLUS India's Be Interaction Structure Live Test Personal Study Pla	ICONIC est Educat ve Live Cla ed Courses s & Quizze Coach	*i ors sses & PDFs s		
24 months No cost EMI		₹:	2,333/n ₹56,0	no 00	>
18 months No cost EMI		₹	2,625/n ₹47,2	no 50	>
12 months No cost EMI		₹	3,208/n ₹38,5	no 00	>
6 months No cost EMI		₹	4,667/n ₹28,0	no 00	>
To be paid as a one-time payment View all plans					
Add a re	eferral cod	e		A	PPLY

PHYSICSLVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS					
S	India's Be					
S						
8	Structure					
\otimes	Live Tests	Live Tests & Quizzes				
	Personal					
	Study Plo	inner				
24 months		₹2.100/mo				
No cost EMI		+10% OFF ₹50,400	>			
18 months		₹2.363/mo				
No cost EMI		+10% OFF ₹42,525	>			
12 months		₹2 888/mo				
No cost EMI		+10% OFF ₹34,650	>			
(markle		F4 200 /				
6 months		₹4,200/mo	>			
NO COST EMI		+10% OFF \$25,200				
To be paid as a one-time payment						
	Viev	v all plans				
Awesome! PHYSICSLIVE code applied X						

Written Solution

DPP-3 Electric Potential Energy By Physicsaholics Team

Ans. b

Ans. d

Ans. b

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/51

Video Solution on YouTube:-

https://youtu.be/avecp_ICRGo

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/40

